In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy.
نویسندگان
چکیده
The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ~30-65 μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R² = 0.8895). SFDS melanin distribution thickness is correlated to MPM values (R² = 0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types.
منابع مشابه
In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin.
We employ a clinical multiphoton microscope to monitor in vivo and noninvasively the changes in reduced nicotinamide adenine dinucleotide (NADH) fluorescence of human epidermal cells during arterial occlusion. We correlate these results with measurements of tissue oxy- and deoxyhemoglobin concentration during oxygen deprivation using spatial frequency domain imaging. During arterial occlusion, ...
متن کاملIn vivo isolation of the effects of melanin from underlying hemodynamics across skin types using spatial frequency domain spectroscopy.
Skin is a highly structured tissue, raising concerns as to whether skin pigmentation due to epidermal melanin may confound accurate measurements of underlying hemodynamics. Using both venous and arterial cuff occlusions as a means of inducing differential hemodynamic perturbations, we present analyses of spectra limited to the visible or near-infrared regime, in addition to a layered model appr...
متن کاملUse of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo.
There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime im...
متن کاملAttenuation of spatial aliasing in CMP domain by non-linear interpolation of seismic data along local slopes
Spatial aliasing is an unwanted side effect that produces artifacts during seismic data processing, imaging and interpolation. It is often caused by insufficient spatial sampling of seismic data and often happens in CMP (Common Mid-Point) gather. To tackle this artifact, several techniques have been developed in time-space domain as well as frequency domain such as frequency-wavenumber, frequen...
متن کاملSpectroscopic spectral-domain optical coherence microscopy.
The spectroscopic content within optical coherence tomography (OCT) data can provide a wealth of information. Spectroscopic OCT methods are frequently limited by time-frequency trade-offs that limit high spectral and spatial resolution simultaneously. We present spectroscopic spectral-domain optical coherence microscopy performed with a multimodality microscope. Restricting the spatial extent o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2015